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Abstract-- The onset of axisymmetric convection in cylindrical layers of fluid heated from beneath is in- 
vestigated for various radius-to-height ratios. Upper as well as lower bounds on the critical Rayleigh 
number for such flows are computed, and the structure of the convective flow is investigated. The latter 

is in good agreement with the observation of Koschmieder. 
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NOMENCLATURE 

characteristic amplitude of flow ; 
coefficients in temperative field re- 
presentation (23) ; 
wave number ; 
coefficients in velocity field re- 
presentation (22) ; 
specific heat at constant pressure ; 
boundary surface element ; 
volume element ; 
unit vectors ; 
acceleration of gravity ; 
bilinear functional (32) ; 
xeroth order Bessel function of the 
first kind ; 
first order Bessel function of the 
first kind ; 
thermal conductivity ; 
linear operator ; 
height of cylinder ; 
number of r-trial functions ; 
number of z-trial functions ; 
unit outward pointing normal on Y; 
pressure field ; 
dimensionless pressure field, 
Cp/p,,vuRa*; 
spatial part of pressure field re- 
presentation (12) ; 
Prandtl number E V/K ; 
radius of cylinder ; 

Ra, 

Ra, 
T, 
f 9 

b 
U: 
w 

V, 
w 

x, 
y, 
2, 
z, 

radial coordinate ; 
dimensionless radial coordinate, 
VyL; 
Rayleigh number E &I’,, - T,)gl?/ 
vu; 
ith Rayleigh number; 
temperature field ; 
time ; 
dimensionless time, ut/C ; 
velocity field E ( Q., QD, U,) ; 
dimensionless velocity field, 
‘tjLIKRa* ; 
spatial part of velocity field re- 
presentation (10) ; 
cylindrical domain ; 
vertical component of dimension- 
less velocity ; 
z-trial function ; 
r-trial function ; 
vertical coordinate ; 
dimensionless vertical coordinate, 
Z/L. 

Greek symbols 
a, thermal coefficient of expansion 

at To; 

aky roots of (30) or (31); 

E, 
aspect ratio E R/L; 
eigenvalue in (28) ; 

G “contained in” : 
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Q 
@, 
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iii, 
v, 
c47 

P9 
0, 

;: 

roots of J&y); 
perturbation in temperature field ; 
dimensionless perturbation in tem- 
perature field, G/(If, - Ti) ; 
spatial part of temperature field 
representation (11) ; 
thermal diffusivity = k&p0 ; 
inverse of square root of Rayleigh 
number E Ra-k; 
viscosity ; 
kinematic viscosity = p/p0 ; 
eigenvalue in (25) ; 
density ; 
growth rate factor ; 
azimuthal coordinate ; 
Stokes stream function. 

Special symbols 
av, boundary of the cylindrical domain 

v; 
% linear vector space. 

Superscripts 
t 7 transpose; 
I 
, derivative with respect to r or z, 

or used in desi~ating linear vector 
spaces ; 

* , adjoint ; 

-3 complex conjugate. 

Subscripts 
1, upper boundary ; 

0, lower boundary ; 

r, real part ; 

i, imaginary part or summation index. 

THE INVFSTIGATION of the buoyancy driven 
instability of a quiescent fluid layer, heated 
from below in the presence of a gravitational 
field, was motivated initially by the experiments 
of l%nard on thin fluid layers [l, 21, although it 
was later shown that he observed surface 
tension driven instability [3, 41. In order to 
account for the experimental observations of 

Benard, Lord Rayleigh performed an analysis 
[S] based on the assumption that the instability 
was buoyancy driven. His linearized theory 
provided the initial stimulus to the area of 
hydrodynamic stability. Since that time, the 
linear stability theory of a fluid layer of infinite 
extent has been refined considerably (see 
Chandrasekhar [6]), and nonlinear stability 
analyses have been applied, pa~icul~ly with 
regard to the prediction of the preferred shape 
of the convective cells at the onset of convection. 
In contrast, a relatively small number of 
theoretical analyses appropriate to systems 
of bounded lateral extent are available in the 
literature. (Some examples include Ostrach 
and Pneuli [7], Zierep [8], Davis [9, lo], 
Liang et al. [ 111 and Edwards [12]. 

Recent elaborate experimental studies aimed 
at verifying the theoretical predictions of infinite 
layer analyses have not lead to consistent 
observations. For example, Koschmieder [13], 
in approximating an infinite layer by a thin 
fluid layer confined between rectangular or 
cylindrical walls, observed only stable rolls of 
geometric shape similar to that of the confining 
vessel. On the other hand, Chen and Whiteh~d 
[14] observed stable rolls and essentially straight 
boundaries in the cylindrical geometry. As 
pointed out by Newell and Whitehead [is] 
and Segel [ 163, the sidewall effect dominated the 
pattern of flow in Koschmieder’s slow and 
carefully controlled experiments whereas this 
was not the case in the experiments of Chen and 
Whitehead (see Segel [16] for a classification 
of the various type patterns). As conjectured by 
Segel [16], sidewall effects can be expected to 
dominate the observed pattern of flow for at 
least a certain range of aspect ratio chef-width 
to depth ratio) if a characteristic measure 
of the vertical asymmetry induced in the dynamic 
state by, for example, variation of fluid properties 
with temperature [17], uniform heat generation 
[lS], or the deflection of a free surface [19], is 
not too large. The present investigation focuses 
on one such “wall mode” of flow--the con- 
centric circular rolls observed by Koschmieder. 
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There are two notable theoretical investigations 
of the effect of lateral walls, the first by Davis [9] 
and the second by Segel f16]. Davis [9], in 
a linear stability analysis of conve&on in a box* 
found that by considering the efTect of lateral 
boundaries, results were obtained which agreed 
well with Koschmieder’s observations for that 
particular geometry. Segel [la], using a multiple- 
scale perturbation analysis to modifv the existing 
nonlinear results for infinite layers to approxi- 
mate a “large” rectangular layer, obtained 
results similar to those of Davis [9] and clearly 
demonstrated the Perturbing effect of the lateral 
boundaries. 

Previous inves~g~tions of convective motion 
in a right circular cylinder have been performed 
by Pellew and Southwell [20], Zierep [S], 
Ostrach and Pneuli [7], and Liang et al. [ll]. 
Pellew and Southwell, and Zierep noted that 
the presence of vertical wails prevented separa- 
tion of variables in the usual fashion (see, 
for example, Chandrasekhar [6]), and conse- 
quently, only considered the idealized case of 
“slip”’ walls, which permitted separation of 
variables. Ostrach and Pneuli utilized the sixth 
order linear partial d~eren~~ equation for the 
vertical component of velocity fw) after IeEreys 
and others, and completed the description of the 
bounded system by specifying that w = 0, 
8w/& = 0, and V$w = 0 on the boundary of the 
container. However, on the vertical boundaries 
the condition a~/& = OY representing the tan- 
gential derivative of w, is merely a restatement 
of w = 0, and does not insure that the horizontal 
component of velocity vanishes on the vertical 
walls. Therefore, their results, obtained by separ- 
ation of variables, do not describe the physical 
case of rigid side walls, except possibly for the 
case of a porous wall system with a certain 
amount of suction, or blowing, at the vertical 
boundaries (It can be established by the method 
used in Section 5 that their method generates 
lower bounds to the critical Rayleigb number.) 
Sub~uen~y~ Shermanand Ustraeh [XJ utilized 
a valid formulation and generated a lower 
bound to the critical Rayleigh number. Liang 

er al. used a finite difference technique to investi- 
gate finite amplitude axisymmetric flow of a 
fluid with temperature dependent viscosity in a 
cylindrical geometry using a variety of badly 
conditions. The aspect ratios (ratio of the radius 
to the height of the fluid layer) considered 
corresponded to cases in which a single roll 
filled the cylinder. At super-critical Rayleigh 
numbers, steady solutions were found with 
either upflow or downflow along the centerline 
of the cylinder depending on the initial state of 
the system They also performed a perturbation 
analysis for insulated “slip” walls and free top 
and bottom surfaces They found that the theory 
with temperature dependent viscosity predicted 
that only one of the steady solutions was stable 
near the critical” At sufficiently large Rayleigh 
numbers, two stable solutions were again 
predicted. 

Because of tbe complexities involved in 
treating the general case of ark-tensional 
flow in a right circular cylinder, this work is 
limited to the mathematically simpler but 
physically realizable case of axisymmetric flow 
in a cylinder with a rigid top and bottom The 
interest in such a flow stems from Koschmieder 
[l?, 22, 231 who observed ~isymmet~c flows 
in both resting and rotating closed cylinders 
heated uniformly from below. Also, Sober-man 
[24], in an earlier but not as carefully controlled 
experiment, observed axisymmetric flow for 
the ease of a free top at an aspect ratio of 2.8. 

The equations describing the dynamics of an 
infinitesimal disturbance introduced into an 
initially quiescent layer of fluid heated uniformly 
from below are analyzed for the case of axi- 
symmetric flow by recasting them in a variational 
fo~ulation and using the Ray~~i~-Rig method 
to approximate the solution. The streamlines 
calculated from the approximate solution are 
used to determine the number and size of the 
convective rolls. Calculations are performed 
for a range of aspect ratios from 05 to 8-O. Also, 
calculations at aspect ratios of 9852, lo-30 and 
12,987 are included for direct comparison to the 
experimental observations of Koschmieder. 
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2. MATHEMATICAL DESCRIPTION 

The system under study consists of an initially 
motionless, boundary cylindrical layer of fluid 
uniformly heated from below. It is convenient 
to describe the system in terms of the cylindrical 
coordinate system shown in Fig. 1, such that 

4 I 

e 
I 

4? d3- ,I- -. 
L 

/ .\ i 

e, 
e+ 

FIG. 1. Schematic of physical system 

the gravitational field is directed in the negative 
z-direction. The vertical temperature profile 
is initially linear with temperature 7” on the 
upper boundary and T, on the lower boundary, 
where T, > T1. The thermal conductivity (k), 
heat capacity (C,) and viscosity (IL) are assumed 
constant. The fluid density (p) is assumed to be 
a linear function of temperature : p = pO(l - 
a(T - To)). The effect of the temperature de- 
pendence of p is assumed negligible except in the 
gravitational body force term appearing in the 
linear momentum equation (that is, the usual 
Boussinesq approximation [25] is made). Apply- 
ing the above assumptions and neglecting second 
order terms, the conservation equations of mass, 
linear momentum and energy lead to the follow- 
ing set of linear nondimensional equations for 
determining the amplitude of the perturbation 
of velocity (U), temperature (0) and pressure(P): 

v.u=o (1) 

Pr- ’ g + VP - V2U - Ra*Oe, = 0, (2) 

ao 
- - Y28 - Ra*(e, * U) = 0, at (3) 

where 

U = U,e, + U,e, + U2ez, 

Note that the particular nondimensionalization 
used here leads to the appearance of an aspect 
ratio, y, in the differential operators but simply 
lied future integrations since the range of both 
independent variables r and z is 0 to 1. Axi- 
symmetric solutions of equations (l)-(3) are 
sought for two sets of boundary conditions. 

u=o;o=o r = 1, O<z<l, (4) 

u=o;o=o z = 0,l 0 < r d 1, (5) 

and 

u=o r= 1, 0 d z < 1, (6) 

u=o;o=o z = 0, 1, 0 Q r d 1, (7) 

a* 0 -_= 
dr 

r= 1, 0 < z < 1. (8) 
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The first corresponds to conducting walls on the In general, y 0 and p are complex-valued 
top, bottom, and side, and the second cor- functions. Substituting the representation (lO)- 
responds to conducting walls on the top and (12) into equations (l)-(3) leads to : 
bottom, and insulating side boundary. 

It is physically obvious and easily established 
v.u = 0, (13) 

by direct substitution that the system (l)-(8) Pr-‘cm + Vp - V*u - R&e, = 0, (14) 

is invarient to the following transformation : 
00 - V% - Rd(e, . u) = 0. (15) 

r + r, cp + cp9 z --) z + 0.5 (9) Finally, it is more convenient to recast system 
That is, the system is invariant to a translation (13)(H) in matrix form by defining 
of the coordinate origin to the middle of the 
layer. After having performed the translation, 

L = 

the system is also invariant with respect to the [ 

(IV-‘0 - V’) - Ra*e, 

- Ra*e, (0 - V) 1 
following transformation : 
1. ~,(r, cp, 4 + - UAr, cp, -4, &(r, 9, 4 + - U,(r, cp, -d, 

Uk rp, a) -+ U=(r. cp, -z), 

Q(r, rp, 4 + 6% q, - 4, 

P(r, 9,~) -+ - P(r, cp, - 4 ; 

q= ;. [I 
Then system (13)-(15) becomes 

(16) 

2. U,k cp, 4 -+ U,(r, cp, - 4, 
U,(r, cp, z) + U,(r, cp, -z) 

Udr, cp, 4 + - UAr, cp, -4, 

W, cp, 4 + - W, q, -4, 

Pk. cp, z) -+ P(r, cp, -z). 

plus the restriction that the velocity field u 
associated with Q be solenoidal, i.e. V. u = 0. 

3. VARIATIONAL FORMULATION 

In order to recast the stability problem in a 
variational form, certain symmetry properties 

Consequently, for example the functions U; 
of the mathematical description are utilized. 

and 8 (or U, U, and P) generated in the 
In examining the symmetry, it is convenient to 

solution of system (l)-(8) separate into two 
define the inner product of two vector-valued 

two classes, i.e. an even and odd class about 
functions as 

z = 05. The importance of these symmetry 
properties lies in the insight which they provide 

(a, b) = j”badv 

in the choice of appropriate trial functions for Then 
the Rayleigh-Ritz technique described in Section 
4. 

((p*, Lfp) = j [Pr-‘a(u* .u) + Vu* :(Vu)t 

Because of the linearity and invariance of the 
system (l)-(8) with respect to a translation of 
zero time, solutions of the following form are 

- Ra%(e, * u*) - R&*(e, . u) + cd*8 

+ V8* . RI] dv + j n . (U* . (VU)~) da 
av 

sought : 

U : u(r, z) e”‘, 

8 : 8(r, z) e”‘, 

+ jf?*n3’8da 

(10) 
av 

follows directly from (13)-(15) and 
(11) theorem. A second application of 

(17) 

Green’s 
Green’s 
and e* P : p(r, z) e”‘, (12) theorem and the restriction that u* 
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assume boundary conditions identical to those 
assumed by u and 8 simplifies (17) to 

Consequently the adjoint of the operator L 
relative to the inner product (,), denoted L*, 
is L, i.e. L = L*, meaning L is a formally self- 
adjoint operator. Moreover, since in deriving 
L*, it is restricted that ip* be equal to cp on 
the boundary W, the domain of the operator L* 
equals the domain of L. Therefore, the differen- 
tial system L plus boundary data represents a 
self-adjoint system. The self-adjointness of the 
governing equations with respect to either set of 
boundary conditions guarantees that the mar- 
ginal stability state (a, = 0) for both cases is 
characterized by bi = 0, that is, the so-called 
principle of exchange of stabilities is valid [26] 
and an oscillatory instability cannot occur. 
It is noteworthy that in this case u, 8 and p 
can be assumed to be real valued functions 
without loss of generality. 

The mathematical characterization of the 
marginal stability state is: 

v.u=o, (18) 

V2u + Ra”k - Vp = 0, (1% 

V% + &@(e, - U) = 0, (20) 

coupled with the appropriate boundary con- 
ditions (4)-(S) or (6)-(g). As mentioned earlier 
this system of equations plus the appropriate 
boundary conditions is non-separable, that is, 
a planform function cannot be introduced as 
in the infinite layer case which is detailed in 
Chandrasekhar [6]. Consequently, here, an 
approximate solution is obtained by recasting 
the equations in variational form and using 
approximate methods of solution. 

It has been shown [26] that the solution of 
the variational problem 

2 l&e=. u) du 

is the solution of the system (18-(20) if Y is a 
linear vector space of couples (u, eh i.e. a 
vector field and an associated scalar field, each 
containing a solenoidal velocity vector field, 
and each satsifying the constraints u = 0 on 
av and either 8 = 0 on W corresponding to 
conditions (4)--(5) or 0 = 0 at z = O,l, 0 < r 6 1, 
corresponding to (6)(g). It is noteworthy that 
in the case of boundary conditions (6)(S) the 
conditions a/& = 0 at r = 1, 0 < z < 1, does 
not have to be satisfied by couples in Y since 
it is a so-called natural, or unstable, boundary 
condition and will automatically be satisfied by 
the temperature field 8 associated with the 
maximizing couple. (See Mikhlin [27] for a 
detailed treatment of natural boundary con- 
ditions.) 

4. RAYLEIGH-RITZ APPROXIMATION AND 
TRIAL FUNCTIONS 

The Rayleigh-Rib technique is used to 
generate an upper bound approximation to the 
critical Rayleigh number (here, “critical” refers 
to the lowest Rayleigh number at which a station- 
ary axisymmetric pattern of motion can prevail 
m~themuticu~Zy~ as well as an approximation to 
the corresponding dynamic state of the system. 
As is well-known [27], the Rayleigh-Ritz 
approximation method reduces the extremal 
problem to a finite dimensional problem by 
restricting the linear vector space-Y appearing 
in (21) to a subspace r’ E “#“. The latter restric- 
tion is implemented by representing the approxi- 
mate solution in terms of a linear combination 
of linearly independent couples (Ub 0,) which are 
contained in+“’ and form a basis my’. Therefore, 
if I’ is the approximation to Iz which is generated 
in Y’, it folfows directly that I’ G 1, and in 
general 2 < ;1,, < . . . < A,ifY’CY C . . . CT. 
That is, as the number of possible couples in 
competition increases, the maximum can never 
decrease. In terms of the critical Rayleigh 
number, it follows that the Rayleigt-Ritz 
technique leads to an upper bound. 

In applying the Rayleigh-Ritz method, it is 
convenient to use the following representations 
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for u and 8 in (21) : 

U = 2 tBij[i*JZ) F(r)e* 

i= 1 j=l 

- 1 X,{z) Yl(r) e, 
I 1 (22) 

8 = 5 5 Aij Jo(ai~) sin 0’712). (23) i=l j=l 

Here a prime denotes differentiation with 
respect to the argument.. The corresponding 
approximate Stokes streamfunction is 

* = ,il jfl Bij Klr) xjtz). (24) 

The functions x(r) and Xjz) are eigenfunctions 
of the following eigenvalue problems : 

lp) = YXr) = 0 r= 1, (26) 
I@), Ylr) finite I = 0, (27) 

and 

$XJz) = @X,(z) (28) 

XXZ) = Xi(z) = 0 z = 0, 1. 

Finally, the a’s are roots of either 

J&G = 0 (conducting sides), 

or 

(29) 

(30) 

J,(G) = 0 (insulating sides). (31) 

These conditions insure that the trial solution 
satisfies the linear independence property and 
boundary conditions appropriate to the 
Rayleigh-Ritz method. Also the axial trial 
functions, X,‘s, fall into two classes, respectively 
even and odd functions about z = 0.5, and 

hence the symmetry properties satisfied by the 
exact solution are satisfied by this choice of 
trial functions. Here the insulating side con- 
ditions de/dr = 0, r = 1, is satisfied even though 
it is a natural boundary condition. It is hoped 
that this will result in a better representation of 
the temperature and velocity fields. 

Substituting the representations (22) and (23) 
into (21) leads to the finite dimensional extremal 
problem of maximizing the functional 

I = 2S8(e;u)do - n’j(Vu:(Vu) + W.W)dv, 
V V 

(32) 

which is now only a function of the 2NM 
variables A, B, The necessary conditions for a 
maximum are 

ar -----= 
aAij O i= 1,2,... ,N; j=l,2 ,..., M, 

(33) 

ar 
-= 
aBij 

0 i= 1,2,..., N; j=l,2 ,..., M. 

(34) 

These conditions lead to the following system 
of linear, homogeneous algebraic equations 
(i.e. an algebraic eigenvalue problem) for deter- 
mining 1 E Ra -’ and the constants A, and B, 
up to a multiplicative constant for M either odd 
(corresponding to the even mode in z) or even 
(corresponding to the odd mode in z): 

Y;(r) Jo(@.ir) dr 
1 

n,m 0 

1 

X cs X,(z) sin (j~z) dz 

0 
11 
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C i A-Li Y’ir) Jo&q9 dr 
1 

n,m 0 

1 

+ CJ Xjcz) sin (n~z) dz II 
0 

1 

+$ ZI [s Bkq r- l YL(r)Y;(r) dr -1 
.4 0 

1 

X [J X;(z) X$z) dz) dz 
llli 

= 0, (36) 

0 

where m, k = 1,2,. . . , N; 

n, q = 1,3,. . , M if M is an odd integer; 
n, q = 2,4, . . . , M if M is an even integer; 
JJ = Jf(Ori) for conducting sides ; 
JJ = Jg(ai) for insulating sides. 

To facilitate the solution of this set of algebraic 
equations, generated by the Rayleigh-Ritz tech- 
nique, the equations are recast in the form of a 
matrix eigenvalue problem in terms of the B- 

coefficients. The resulting matrix eigenvalue 
problem yields an upper bound to the critical 
Rayleigh number and the corresponding sets 
of approximate velocity coe~~ients (Bij’sf. The 
associated set of temperature coefficients are 
obtained by solving the matrix equation relating 
the A,‘S and Bij’s. The streamfunction corre- 
sponding to a calculated eigenvalue was cal- 
culated by substituting the velocity coefficients 
into equation (24), and then the number of radial 
rolls was determined from the streamlines as 
displayed in Figs. 2-6. Note that the streamlines 
are displayed only for z values between 0.5 
and tO since they are symmetric about z = 0.5. 

5 LOWER BOUND TO CRITICAL 
RAYLEIGH NUMBER 

A lower bound to the critical Rayleigh 
number can be generated by reconsidering the 
basic variational fo~ulatio~ Suppose the 
ratio of the quadratic forms appearing in (21) 
is maximized with respect to couples (u, 0) 
contained in a linear vector space V* which 
includes Y, i.e. Y C_ +‘“*. It is obvious that the 
maximum cannot decrease and hence if A* 
is the maximum value of (21) in V’*, it follows 

0.5 0,6 0.7 O-8 0.9 1.0 

FIG. 2. Streamlines for conducting lateral walls at the 
critical Rayleigh number and y = 1.70. 
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FIG. 3. Streamlines for conducting lateral walls at the critical 
Rayleigh number and y = 3.25. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 I.0 

FIG. 4. Streamlines for conducting lateral walls at the 
critical Rayleigh number and :’ = 5.75. 

that A ,< A* or Ru* < RUcritical Thus a lower require the temperature and tangential com- 
bound to RUcri~ical is generated. ponent of the velocity field to vanish at the 

To implement this scheme computationally, lateral boundaries of the cylinder. The Euler 
a suitable linear vector space V* must be equations appropriate to the variational prob- 
be devised Here one such computationally lem (31) over Y* instead of Y lead to the 
convenient choice is to impose the same smooth- differential equations (18)-(20) but with the 
ness requirements of couples as in V but not to new boundary conditions : 
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u=o; en70 z = O,l, 0 < I < 1; (37) Pellew and Southwell [20] and Zierep [S] 

q*u=o 
by the method of separation of variables This 
method leads to a Stokes stre~fun~t~on of the 

e;Vl& = 0 

e, - V6 = 0 

f= 1, O<ztlI; (38) form 

I#+ = CrJ,(ayr)F(z) (39) 

where F(z) satisfies a differential eigenvatue 
where az E e, *a. This rna~~~ti~ problem problem identical to the one obtained by 
corresponds to allowing “slip” at the lateral Pellew and Southwell f20] for the case of an 
walls in the physical system An exact solution infinite fluid layer. The permissible values of a, 
to (18)-(2(l), (37) and (38) can be obtained after the so-called wave number, are, for fixed values 

FIG. 5. Streamlines for insulating lateral walls at the critical 
Rayleigh number and y = 5.75. 

.? 

t-o 

FIG. 6. Streamlines for insulating lateral walls at the critical 
Rayleigh number and y = 7.75. 
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of tb.e aspect ratio y, the roots of the transcen- 6. DISCUSSION AND RESULTS 

dentalequation:J,(uy) = 0. Oncethepermissible In forming the system of algebraic equations 
value of Q are obtained, the corresponding Ray- to be solved for the approximate Rayleigh 
leigh numbers are computed by solving the numbers and associated sets of temperature and 
eigenvalue problem associated with F(z) and the velocity coefficients (Aijand Bij), it was noted that 
permissible values of a. If the roots of Ji(ar) = 0 two noncombining forms of the solution, re- 
are denoted by qk, then the permissible values of spectively even and odd about z = 0.5, result, 

--- Conducting sides 

--- Sl~p,insuloted sides 

- lnsuloted sides 

0 I 2 3 4 5 6 7 8 9 

Aspect ratio 

FIG. 7. Overall stability curves for bounded cylindrical layer. 

a are uk = qky -I. It is apparent from an inspec- 
tion of(39) that the kth root qk and corresponding 
wave number & am associated with a flow which 
has k radial rolls The corresponding locus 
of lower bound Rayleigh numbers is indicated 
bythe--- line in Fig 7 ; also indicated is 
the number of radial rolls. It is noteworthy that 
the number of rolls increases with aspect ratio, 
and also that if the number of radial rolls is 
fixed there is always an aspect ratio which yields 
the smallest value of the Rayleigh number, 
i.e. 1708. 

For an aspect ratio equal to, or greater than, 05, 
the even solution in z, corresponding to an odd 
number of vertical rolls, is the most unstable. 
At an aspect ratio of 0.5, for example, the 
Rayleigh number appropriate to the first even 
mode for conducting side walls is 11725 whereas 
the Rayleigh number for the first odd mode is 
31122. This comparison is typical of those 
obtained at larger aspect ratios and henceforth, 
for aspect ratios greater than 05 only even 
solutions [corresponding to j = I, 3, 5, . . . in 
Xjz) and sin (jzz)] are considered. Consequently 
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Table 1. Conducting sides. The three smallest Rayleigh numbers (Ra,, Ra,, 
Ra,) and the number of radial rolls oredicted are tabulated for aspect ratios 

from 0.5 to 8.0 

Aspect ratio Ra, Rolls b Rolls Ra3 Rolls 

0.50 11725.08 1 71006.91 
1.00 2545.02 1 7334.75 
1.25 2124.87 1 4266.56 
1.50 2009.61 1 3089.59 
1.60 1988.77 2 2849.38 
1.70 1968.00 2 2689.77 
1.75 1956.11 2 2633.12 
2+IO 1886.24 2 2472.73 
2.25 1833.35 2 2323.95 
2.50 1810.31 2 2159.90 
2.58 1806.60 2 2118.32 
2.66 1803.32 3 2084.08 
2.665 1803.12 3 2082.19 
2.67 1802.91 3 2080.32 
2.68 1802.49 3 2076.68 
2.69 1802.06 3 2073.15 
2.71 1801.18 3 2066.44 
2.74 1799.79 3 2057.19 
2.75 1799.30 3 2054.32 
2.83 1794.91 3 2034.92 
3.00 1783.55 3 2008.99 
3.083 1777.79 3 1999.49 
3.25 1767.89 3 1976.75 
3.416 1761.60 3 1946.30 
3.50 1759.62 3 1929.99 
3.75 1755.56 4 1890.51 
400 1749.68 4 1871.08 
4.25 1743.01 4 1858.86 
4.50 1739.11 4 1839.80 
4.75 1737.17 5 1821.05 
5.00 1734.36 5 1810.98 
5.25 1730.95 5 1804.98 
5.50 1728.87 5 1796.36 
5.75 1727.82 6 1785.10 
6.00 1726.25 6 1779.41 
6.25 1724.29 6 1776.06 
6.50 1723.10 6 1770.42 
6.75 1722.50 7 176425 
7.00 1721.49 7 1760.98 
7.25 1720.24 7 1759.06 
7.50 1719.55 7 1755.41 
7.75 1719.20 7 1751.62 
8.00 1718.53 8 1750.03 

2 

95107.44 
20698.84 
10237.14 
6179.77 
5276.88 
4605.75 
4336.82 
4336.82 
3113.50 
2898.34 
2814.87 
2727.68 
2722.23 
2716.79 
2705.94 
2695.13 
2673.69 
2642.05 
2631.68 
2552.55 
2413.76 
2362.70 
2292.77 
2253.66 
2237.03 
2170.50 
2091.08 
2036.05 
2010.37 
1985.19 
1948.99 
1919.89 
1905.75 
1893.42 
1873.99 
1857.12 
1849.03 
1842.12 
1830.35 
1820.23 
1816.09 
1811.91 
1804.25 

3 

2 
2 
2 

3 
3 
3 

3 2 

4 
4 
4 

4 

5 

5 

6 

6 

7 

7 

8 

8 

4 
2 
3 

5 

5 

6 

6 

7 

5 

6 

6 

9 

- signifies number of rolls not determined for given Rayleigh number 

the instability is manifested as a single vertical radial trial functions and 3 (A4 = 1, 3, 5) vertical 
roll and varying number of radial rolls. trial functions. This choice of trial solution 

Rayleigh numbers and the corresponding sets allows the approximation of dynamic states 
of velocity and temperature coeffkients were with up to 10 radial rolls and 1, 3 or 5 vertical 
obtained with N = 10 and A4 = 5, i.e. for ten rolls, and yields Rayleigh numbers in the aspect 
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Table 2. Insulating sides. The three smallest Rayleigh numbers (Ra,, Ra,, Ra,) 
and the number of radial rolls predicted are tabulated for aspect ratios from 

0.5 to 8.0 

Aspect ratio b Rolls Ra2 
- 

0.50 10887.15 1 68048.09 
1.0 2261.86 1 6631.50 
I.25 192083 1 3777.60 
1.50 1896.13 1 2677.94 
1.60 1921.99 1 2448.78 
1.70 1946.48 2 2303.90 
1.75 1949.86 2 2264.26 
2.00 1862.27 2 2329.06 
2.25 1791.92 2 2315.21 
2.50 1780.81 2 2082.78 
260 1786.43 2 2016.39 
2.665 1790.93 2 1983.16 
2.70 1793.07 2 1968.73 
2.75 1795.17 3 1952.62 
2.80 1795.50 3 1942.14 
2.90 1789.73 3 1937.65 
300 1778.25 3 1949.40 
3.25 1752.99 3 1976.04 
3.50 1747.24 3 1908.06 
3.75 175290 3 184944 
4.00 1747.95 4 1841.51 
4.25 1736.39 4 1856.28 
4.50 1732.93 4 1832.41 
4.75 1734.54 4 1801.39 
500 1733.78 5 1794.33 
5.25 1727.67 5 1802.22 
5.50 1725.30 5 1792.95 
5.75 1726.57 5 1774.95 
6.00 1725.98 6 1769.02 
6.25 1722.48 6 1773.30 
6.50 1720.72 6 1770.05 
6.75 1721.35 6 1759.06 
700 1721.36 7 1753.89 
7.25 1719.33 7 1756.02 
7.50 1717.95 7 1755.59 
7.75 1718.17 7 1748.91 
8.00 1718.39 8 174445 

Rolls Ra, Rolls 

2 
2 

; 
2 

; 
2 
3 

; 
3 
3 
3 

: 
3 
4 
4 
4 
4 
5 
5 
5 

: 
6 
6 
6 
6 
7 
7 
7 
7 
7 
8 
8 

86729.72 3 
19265.47 3 
9351.86 3 
5548.23 3 
4701.15 3 
4067.04 3 
3810.07 3 
2940.43 3 
2727.49 1 
2889.57 2 
2778.51 4 
268044 4 
2628.55 4 
2557.80 4 
2491.80 4 
2374.89 4 
2278.11 4 
2143.97 2 
2189.69 2 
2163.46 5 
2042.71 5 
1967.74 5 
1975.39 3 
1985.32 6 
1930.12 6 
1884.69 6 
1881.67 4 
1892.48 5 
1867.55 7 
1838.22 7 
1831.62 5 
1839.25 6 
1829.30 8 
1809.79 8 
1801.99 6 
1806.96 6 
1805.57 9 

ratio range considered here accurate to the The stability curves for insulating and con- 
fourth significant figure based on the change in ducting side walls are presented in Fig. 7. 
Rayleigh number when 5 additional radial The corresponding number of radial rolls can 
trial functions (N = 15) or 1 additional axial can be obtained from Tables 1 and 2. The 
trial function (A4 = 7) are added. The three stability curve for insulated lateral boundaries 
smallest Rayleigh numbers and the corre- has peaks at the aspect ratios at which the 
sponding number of radial rolls determined number of rolls predicted increases, similar to 
from streamlines are tabulated in Tables 1 and 2 the lower bound case where an independent 
for conducting and insulating lateral walls, stability curve existed for a given number of rolls. 
respectively. This characteristic is not evident in the stability 
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curve for conducting sides although inflection point from 2 to 3 rolls for insulated lateral 
points seem to occur at these transition points. boundaries. 
In both curves the number of rolls increases with The range of aspect ratios over which a given 
increasing aspect ratio. This increase in the number of rolls is predicted seems nearly 
number of rolls in both cases, is characterized uniform in both cases after the appearance of 

i 

5 
y =2.8 

b 

0.5 I.0 

-5 I 

FIG. 8. Radial component of velocity for insulating lateral 
walls. 

by the gradual growth of the roll nearest the the second roll, being approximately a unit of 
wall, followed by the formation of the additional aspect ratio in width. The transition in the 
roll from this larger roll as is illustrated in Fig. 8. number of rolls occurs, for both insulating and 
In this figure the radial velocity component is conducting lateral walls, near aspect ratio values 
displayed as a function of radius at z = 0.25 of 2.75, 3.75, 4-75, . . . for a transition from 2, 3, 
(or z = 0.75 since the solution is symmetric 4, . . . radial rolls to 3,4,5, . . . rolls, respectively. 
about z = 0.5) at aspect ratios near the transition This compares with the wavelength relation 
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Table 3 
-- --_____ -----_--------__ 

Aspect ratio Ra, Rolls Ra, Rolls Ras Rolls 

A. Conducting sides 
9.852 1714.66 10 1733.89 10 1768.27 9 

10.30 1713.94 10 1732.26 11 1761.68 11 
12.987 171186 13 1723.08 13 1742.61 14 

B. Insulating sides 
9.852 171444 10 1731.38 10 1767.94 9 

10.30 1713.49 10 1731.57 10 175696 11 
12-987 1711.69 13 1721.76 13 1742.32 14 

_-- -. .-----_-------~~- --------- ~_ 

ship for the infinite layer case [23] : 

nA = ;. 

A, the wavelength, is the ratio of the width of one 
roll (one roll corresponds to one half of a roll 
cell in the infinite layer terminology) to the fluid 
layer depth; n is the number of rolls; and R/L 
is the aspect ratio. From linear theory for an 
i&mite layer, A, as defined here, has a value of 
IQ08 at the critical Rayleigh number [6]. 
Therefore, (40) would suggest that the number 
of rolls would roughly correspond to the aspect 

ratio, a fact that the results mentioned above 
bear out. 

In order to present an overall stability picture 
for a cylind~c~ layer of fluid, the upper bound 
stability curves for insulating and conducting 
lateral walls, and the lower bound stability curve 
of insulating slip walls are displayed in Fig 7. 
The important feature here is that the distance 
between the lower bound and the upper bound 
is at worst only about 20 per cent of the average 
critical Rayleigh number predicted and this 
distance rapidly decreases as the aspect ratio 
increases. The convergence of the upper and 

FIG. 9. Streamlines for insulating walls at the critical 
Rayleigh numbers and y = 12.987. 
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lower bounds stability curves at large aspect 
ratios is indicative of the lessening influence of 
the lateral boundary on the stability of the 
system. Also noteworthy is the fact that the 
upper and lower bound stability curves converge 
very near to one another at those aspect ratios 
near which the number of rolls predicted changes. 

The relative order of the stability curves for 
insulating and conducting lateral boundaries is 
derivable from the variational formulation and is 
a manifestation of the less constrained tempera- 
ture field associated with the insulating case. 
As was pointed out in Section 3, the elements of 
the linear vector space 71r associated with the 
variational formulation (21) are not required to 
satisfy the condition e, . V0 = 0, r = 1,O < z d 1 
appropriate to an insulating lateral boundary 
because this condition is a natural boundary 
condition. Consequently the space Y associated 
with the insulating side wall problem includes 
the space associated with the conducting side 
wall problem as a subspace. Therefore, the 
maximum of (21) for the insulating side wall case 
cannot be smaller than the corresponding 
maximum for the conducting case, or 

The fact that the approximate critical Rayleigh 
number for insulating side walls lies below that 
for conducting side walls affords a good check 
on the accuracy of the matrix eigenvalue routine 
used here, especially when applied at large aspect 
ratios. 

Koschmieder’s experimental observations, 

[13], [22] and [23], were made at aspect ratios 
of 9.852, 10.30 and 12.987, and a resume of 
the appropriate analytical predictions, using 
19 radial trial functions and 3 axial trial func- 
tions, is presented in Table 3 and an example of 
the corresponding streamlines is displayed in 
Fig. 9. In Table 1, Ra, is the critical Rayleigh 
number, and Ra, and Ra, are the Rayleigh 
numbers corresponding to the second and 
third eigenvalues, respectively. 

At both 9.852 and 10.30, the approximate 
analysis for either insulating or conducting 

sides predicts 10 radial rolls at the critical 
Rayleigh number, agreeing with Koschmieder’s 
observations. At 9.852, Koschmieder observed 
that the number of rolls decreases to 9 at a 
super-critical value of the Rayleigh number [ 131; 
at 10.30 he observed an increase to 11 rolls [22]. 
Both of these trends are suggested by the number 
of radial rolls associated with the second and 
third eigenvalues if one invisions a supercritical 
instability of the first state and a stable super- 
critical flow associated with the second, or 
third, state. This possibility is suggested since 
it has been shown [28] that each of the simple 
eigenvalues (Rayleigh numbers) of the linear 
stability problem corresponds to a bifurcation 
point of the nonlinear stability problem. That 
is, there exist steady, finite amplitude, axi- 
symmetric flows at Rayleigh numbers arbitrarily 
close to the Rayleigh number stability limits 
predicted by linear theory. The results can be 
displayed qualitatively as in Fig. 10 where A 

Raylelgh number 

FIG. 10. Qualitative sketch of nonlinear stability results. 

represents some characteristic amplitude of the 
flow. (A = 0 for Ra < Ra, since it has been 
shown [29] that subcritical instabilities cannot 
occur.) Steady, finite amplitude, axisymmetric 
flows are possible along the solid lines in Fig. 10. 
Moreover, at each bifurcation point (intersection 
of solid line with line A = 0) the structure 
of the finite amplitude flow is “close” to the 
flow associated with the appropriate solution of 
the linear stability problem. That is, the number 
of vertical cells and radial rolls should be 
identical in the limit of zero flow amplitude. 
If one assumes that the structure of the flow at the 
bifurcation points persists to larger values of the 
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Rayleigh number, i.e. along the solid lines in 
Fig. 10, then, for example, when Ra2 < Ra < Ra3 
steady flows with the number of radial rolls 
associated with the Ra,- or Ra,-solution of the 
linear stability problem would be possible. 
The one which is observed would then depend 
on the stability of these flows. 

At an aspect ratio of 12.987, the approximate 
analysis predicts thirteen rolls for either con- 
ducting or insulating lateral walls, again agreeing 
with Koschmieder’s observation near the critical 
Rayleigh number [23]. The number of rolls 
associated with the second and third eigenvalues, 
together with the results at 9.852 and 10.30 serve 
to point out the fact that in the present case no 
general pattern of monotonic increase or de- 
crease in the number of radial rolls can be 
associated with the succeeding higher order 
Rayleigh numbers (eigenvalues) predicted using 
approximate linear stability analysis. 
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INSTABILITE THERMOCONVECTIVE DANS UNE COUCHE FLUIDE 
CYLINDRIQUE LIMITBE 

RCum&Le debut de la convection avec symetrie de revolution dans des couches cylindriques de fluides 
chauffees par en-dessous est Ctudie pour differents rapports du rayon a la hauteur. On a calcuk les bornes 
superieures et inferieures du nombre de Rayleigh critique, ct examine la structure de l’ecoulement de 

convection. Cette demiem est en bon accord avec Its observations de Koschmieder. 

THERMISCHE INSTABILITiiT IN BEGRENZTEN FLUSSIGKEITSSCHICHTEN 

Z~~amntenf~nng- Das Einsetzen von achsensymmetrischer Konvektion in zylindrischen Fliissigkeits- 
schichten, die von unten beheizt werden, ist fur zahlreiche Radius-HBhe-Verhaltnisse untersucht worden. 
Es wurde die obere und untere Grenze der kritischen Rayleighzahl fiir derartige Striimungen berechnet 
und die Struktur der Konvektionserhbhung untersucht. Die Ergebnisse dieser Untersuchung stehen in 

guter Ubereinstimmung mit den Beobachtungen von Koschmieder. 

TEPMOKOHBEKTHBHAR HEYCTOtiqRBOCTb B OFPAHHqEHHOM 
LJHJIHHflPBYECKOM CJIOE ‘IfCHAHOCTM 

AHaOTaqHsr-klCCneAyeTcfi B03HtIKHOBeHIW OCWlMMeTpEl’iHO~ KOHBeKIJLW B ~llJIHH~pIlYe- 

CKMX CJIORX ?K:urJIKOCTH, H3l’peBS!MOfi CHE13J’, gJIH p33JlENHbIX OTHOUEHHt p3JJIlyCEI K BbICOTe. 

t%CCWTbIBFUOTCff BepXHHe R HWKHHe rpaHIlI&I KPATRWCKOrO ‘IllCjI3 PeJIeR fiJIR T3KllX 

TeWHiIti M M3)‘WeTCR CTpyKTyp3 KOHBeKTklBHOrO IIOTOK3. nOCJIenHW HBXOJ&ATCR B XOPOURM 

COOTBeTCTBHH C H36JUO~eHtiHMEl KOLIIMHzep3. 


